Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Hai-Liang Zhu,* Ji-Long Ma, Xiao-Yang Qiu, Si-Chang Shao, Song Yang and Lin Sun

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and, Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.042$
$w R$ factor $=0.117$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## catena-Poly[[silver(I)- $\mu$-1,4-diamino-butane- $\left.\kappa^{2} N: N^{\prime}\right]$ hexafluoroarsenate]

The title compound, $\left\{\left[\operatorname{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]\left(\mathrm{AsF}_{6}\right)\right\}_{n}$, is a helical onedimensional chain $\mathrm{Ag}^{\mathrm{I}}$ complex. The $\mathrm{Ag}^{\mathrm{I}}$ atom is coordinated by two N atoms from two 1,4-diaminobutane ligands, in a nearly linear geometry. The crystal structure is a threedimensional structure stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and weak Ag...F interactions.

## Comment

The title complex, (I), crystallizes in the monoclinic space group $P 2_{1} / n$. The complex consists of polymeric 1,4-diaminobutanesilver(I) cations and hexafluoroarsenate counterions as shown in Fig. 1. The simplest repeat unit is the 1,4-diaminobutanesilver(I) cation and a hexfluoroarsenate anion. In the cation, the Ag atom is in a linear coordination environment, being coordinated by two N atoms from different butanediamine ligands. The average $\mathrm{Ag}-\mathrm{N}$ distance is 2.137 (5) $\AA$ and the angle around Ag 1 is $178.1(2)^{\circ}$, indicating a slightly distorted linear geometry at the Ag 1 atom.

(I)

All the butane ligands are fully extended in different directions and are linked together by the $\mathrm{Ag}-\mathrm{N}$ bonds, forming a one-dimensional chain along the $c$ axis (see Fig. 2).

In the crystal structure, extensive intermolecular hydrogen bonds ( $\mathrm{N} 2-\mathrm{H} 2 C \cdots \mathrm{~F} 1, \mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~F} 1^{\mathrm{i}}$ and $\mathrm{N} 2-\mathrm{H} 2 D \cdots 2^{2 i}$; for symmetry codes see Table 1), and weak interactions between the Ag atom and the F atoms $[\mathrm{Ag} 1 \cdots \mathrm{~F} 3=$ $3.462(7) \AA, \quad \mathrm{Ag} 1 \cdots \mathrm{~F} 4^{\mathrm{iii}}=3.353(7) \AA, \quad \mathrm{Ag} 1 \cdots \mathrm{~F} 5^{\mathrm{iv}}=$


Figure 1
The structure of the title compound, showing $20 \%$ probability displacement ellipsoids and the atom-numbering scheme.

## Received 29 August 2003

Accepted 15 October 2003 Online 23 October 2003
3.241 (7) $\AA, \quad \mathrm{Ag} 1 \cdots \mathrm{~F} 6=3.208$ (7) $\AA$ and $\mathrm{Ag} 1 \cdots \mathrm{~F} 6^{\mathrm{iv}}=$ 3.126 (7) Å] were observed [symmetry codes: (iii) $x-\frac{1}{2}$, $-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $\left.-x,-y+2,-z+1\right]$.

## Experimental

All reagents and solvents were used as obtained without further purification. $\mathrm{AgAsF}_{6}(0.5 \mathrm{mmol}, 148 \mathrm{mg})$ and 1,4-diaminobutane $(0.5 \mathrm{mmol}, 44 \mathrm{mg})$ were dissolved in ammonia $(10 \mathrm{ml})$. The mixture was stirred for ca 10 min to give a clear solution. After allowing the solution to stand in air for 3 d with gradual loss of ammonia gas, large colorless crystals were formed. The crystals were filtered off and washed three times with water and dried in a vacuum desiccator using anhydrous $\mathrm{CaCl}_{2}$ (yield $63 \%$ ). Elemental analysis found: $\mathrm{C} 12.59, \mathrm{H}$ 3.21, N $7.18 \%$; calculated for $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{AgAsF}_{6} \mathrm{~N}_{2}$ : C 12.48, H 3.14, N $7.28 \%$.

## Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]\left(\mathrm{AsF}_{6}\right)$
$M_{r}=384.95$
Monoclinic, $P 2_{1} / n$
$a=7.806(2) \AA \AA^{2}$
$b=10.371(2) \AA$
$c=13.234(3) \AA$
$\beta=105.74(3)^{\circ}$
$V=1031.2(4) \AA^{3}$
$Z=4$
$D_{x}=2.480 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K K radiation

Cell parameters from 4450
reflections
$\theta=2.8-25.4^{\circ}$
$\mu=5.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.38 \times 0.32 \times 0.20 \mathrm{~mm}$

## Data collection

Siemens SMART CCD areadetector diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.155, T_{\text {max }}=0.366$
4479 measured reflections

> 2025 independent reflections
> 1757 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=26.0^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-12 \rightarrow 8$
> $l=-14 \rightarrow 16$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.117$
$S=1.08$
2025 reflections
135 parameters
H atoms treated by a mixture of independent and constrained refinement


Figure 2
The one-dimensional helical chain of (I), viewed along along $c$.


Figure 3
The crystal packing of (I), showing the hydrogen-bonding interactions as dashed lines.

H atoms H2C and H2D were located in Fourier maps and were refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of 0.90 and $0.96 \AA$, respectively; the $U_{\text {eq }}$ values for these H atoms were fixed at $0.08 \AA^{2}$. The F atoms have quite large $U_{\text {eq }}$ values, but they were not considered disordered. The highest peak is located at ( $0.2765,0.2301$, 0.0467).

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: $\operatorname{SHELXS97}$ (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002 and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

## References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

